Quantum mechanics. Department of physics. 7th semester.

Lesson № 17. Spin (ending)

1. Checking hometask.

1.1. Find eigenvalues and eigenfunctions of the operator $\vec{a} \cdot \hat{\vec{S}}$, where \vec{a} is a 3D vector, $\hat{\vec{S}}$ is the spin-¹/₂.operator.

1.2. Calculate $\overline{\hat{S}_n^2}$ for the operator of a spin projection \hat{S}_n on an arbitrary direction, which is defined by the unit vector $\vec{n} = (n_x, n_y, n_z) = (\sin\theta\cos\varphi, \sin\theta\sin\varphi, \cos\theta)$. (from HKK No 5.2)

2. Tasks solving.

<u>**Task 1.</u>** For the spin S = 1/2 indicate raising and lowering (ladder) operators $S_{\pm} = S_x \pm iS_y$, find their action on eigenfunctions of the operator S_z , find $(S_{\pm})^2$ and $S_{\pm}S_{\pm} + S_{\pm}S_{\pm}$ anticommutators. (HKK No 5.11)</u>

<u>**Task 2.**</u> For two particles with spin $\frac{1}{2}$ find eigenfunctions of the operator $\hat{\vec{S}} = \hat{\vec{S}}_1 + \hat{\vec{S}}_2$, namely common eigenfunctions of the operators $\hat{\vec{S}}^2$ and S_z (HKK No 5.17 or Flugge, Part 2, task No 139)

As reference. Adding momentum rule is $S = S_1 + S_2$, $S_1 + S_2 - 1$, ..., $|S_1 - S_2|$

Figuretions	Eigenvalues			Symmetry
Eigenfunctions	S	$\lambda_{S^2} = S(S+1);$	\boldsymbol{S}_{z}	Symmetry
$\left \uparrow\right\rangle_{1}\cdot\left \uparrow\right\rangle_{2}$	1	2	S = +1	<u>Triplet</u>
$\frac{1}{\sqrt{2}}\left(\left \uparrow\right\rangle_{1}\cdot\left \downarrow\right\rangle_{2}+\left \downarrow\right\rangle_{1}\cdot\left \uparrow\right\rangle_{2}\right)$	1	2	S = 0	S=1 (symmetrical spin wave
$\left \downarrow ight angle_{1}\cdot\left \downarrow ight angle_{2}$	1	2	S = -1	function)
$\frac{1}{\sqrt{2}} \left(\left \uparrow \right\rangle_{_{1}} \cdot \left \downarrow \right\rangle_{_{2}} - \left \downarrow \right\rangle_{_{1}} \cdot \left \uparrow \right\rangle_{_{2}} \right)$	0	0	0	$\frac{\text{Singlet}}{S=0}$ (antisymmetric spin wave function)

Spin functions of two particles with spin $S_1 = S_2 = 1/2$

Here $|\uparrow\rangle_{1,2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $|\downarrow\rangle_{1,2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ eigenfunctions of the operator $S_{1,2}^z$, corresponding to eigenvalues +1/2 and -1/2 agreeably, for the first and second particles.

Hometask HKK 5.17 (finish)

LL – Landau LD, Lifshits IM, Quantum Mechanics HKK- Halitskii E.M., Karnakov B.M., Kohan V.I. Problems in Quantum Physics, 1981 Additional: Flugge Z. Problems in quantum mechanics. P.1, P.2.1974